QwAnalysis
QwRayTracer.cc
Go to the documentation of this file.
1 /*! \file QwRayTracer.cc
2  * \author Jie Pan <jpan@jlab.org>
3  * \author Wouter Deconinck <wdconinc@mit.edu>
4  * \date Thu Nov 26 12:27:10 CST 2009
5  * \brief Raytrace in magnetic field to bridging R2/R3 partial tracks.
6  *
7  * \ingroup QwTracking
8  *
9  * Firstly, unreasonable bridging candidates will be filtered out, others
10  * which can pass through the filter will be matched in a look-up table.
11  * If there is a match, the momentum will be determined by interpolation.
12  * In case there is no match in the look-up table, the bridging candidates
13  * will then be sent into a shooting routine for bridging and momentum
14  * determination. The Newton-Raphson method is used in the shooting routine,
15  * and the 4'th order Runge-Kutta method is used for integrating the equations
16  * of motion for electrons in the QTOR magnetic field.
17  *
18  */
19 
20 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
21 
22 // System headers
23 #include <cstdlib>
24 
25 // Qweak headers
26 #include "QwLog.h"
27 #include "QwUnits.h"
28 #include "QwMagneticField.h"
29 #include "QwTrack.h"
30 #include "QwRayTracer.h"
31 
32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
33 
34 // Maximum number of iterations for Newton's method
35 #define MAX_ITERATIONS_NEWTON 10
36 // Maximum number of iterations for Runge-Kutta method
37 #define MAX_ITERATIONS_RUNGEKUTTA 5000
38 
39 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
40 
42 
43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
44 
45 /**
46  * Constructor: set all member field to zero
47  */
50 {
51  fBdl = 0.0;
52  fBdlx = 0.0;
53  fBdly = 0.0;
54  fBdlz = 0.0;
55 
56  // Process command line options
57  ProcessOptions(options);
58 
59  // Load magnetic field
60  LoadMagneticFieldMap(options);
61 }
62 
63 /**
64  * Destructor
65  */
67 {
68  // Delete the magnetic field
69  delete fBfield;
70 }
71 
72 /**
73  * Load the magnetic field map
74  * @param options Options object
75  * @return True if the field map was successfully loaded
76  */
78 {
79  // If the field has already been loaded, return successfully
80  if (fBfield) return true;
81 
82  // Otherwise reload the field map
83  fBfield = new QwMagneticField(options);
84 
85  // Test magnetic field validity
86  return fBfield->TestFieldMap();
87 }
88 
89 /**
90  * Define command line and config file options
91  * @param options options object
92  */
94 {
95  // Order of the Runge-Kutta method
96  options.AddOptions("Momentum reconstruction")("QwRayTracer.order",
97  po::value<int>(0)->default_value(5),
98  "Runge-Kutta method order (higher than 4 implies adaptive step)");
99  // Step size of Runge-Kutta method for fixed steps (order 4 or less)
100  options.AddOptions("Momentum reconstruction")("QwRayTracer.step",
101  po::value<float>(0)->default_value(1.0),
102  "Runge-Kutta fixed step size (for order 4 or less) [cm]");
103  // Minimum step size of Runge-Kutta method for adaptive step
104  options.AddOptions("Momentum reconstruction")("QwRayTracer.min_step",
105  po::value<float>(0)->default_value(0.1),
106  "Runge-Kutta minimum step size (for adaptive step) [cm]");
107  // Maximum step size of Runge-Kutta method for adaptive step
108  options.AddOptions("Momentum reconstruction")("QwRayTracer.max_step",
109  po::value<float>(0)->default_value(10.0),
110  "Runge-Kutta maximum step size (for adaptive step) [cm]");
111  // Maximum step size of Runge-Kutta method for adaptive step
112  options.AddOptions("Momentum reconstruction")("QwRayTracer.tolerance",
113  po::value<float>(0)->default_value(1e-10),
114  "Runge-Kutta adaptive step maximum allowable truncation error");
115  // Step size of Newton's method in momentum
116  options.AddOptions("Momentum reconstruction")("QwRayTracer.momentum_step",
117  po::value<float>(0)->default_value(30.0),
118  "Newton's method momentum step [MeV]");
119 
120  // Starting momentum of Newton's method
121  // Note: Start iteration from a higher momentum limit (1.250 GeV)
122  // as suggested by David Armstrong, to avoid possible bias
123  options.AddOptions("Momentum reconstruction")("QwRayTracer.initial_momemtum",
124  po::value<float>(0)->default_value(1.25),
125  "Newton's method position step [GeV]");
126 
127  // Starting position for magnetic field swimming
128  options.AddOptions("Momentum reconstruction")("QwRayTracer.start_position",
129  po::value<float>(0)->default_value(-250.0),
130  "Magnetic field swimming start position [cm]");
131  // Ending position for magnetic field swimming
132  options.AddOptions("Momentum reconstruction")("QwRayTracer.end_position",
133  po::value<float>(0)->default_value(+577.0),
134  "Magnetic field swimming end position [cm]");
135 
136  // Newton's method optimization variable
137  options.AddOptions("Momentum reconstruction")("QwRayTracer.optim_variable",
138  po::value<int>(0)->default_value(0),
139  "Newton's method optimization variable: 0 for position.Perp(), 1 for direction.Theta()");
140  // Newton's method optimization cut-off resolution
141  options.AddOptions("Momentum reconstruction")("QwRayTracer.optim_resolution",
142  po::value<float>(0)->default_value(0.3),
143  "Newton's method optimization cut-off resolution [cm for position, rad for angles]");
144 }
145 
146 /**
147  * Process command line and config file options
148  * @param options options object
149  */
151 {
152  fIntegrationOrder = options.GetValue<int>("QwRayTracer.order");
153  fIntegrationStep = Qw::cm * options.GetValue<float>("QwRayTracer.step");
154  fIntegrationMinimumStep = Qw::cm * options.GetValue<float>("QwRayTracer.min_step");
155  fIntegrationMaximumStep = Qw::cm * options.GetValue<float>("QwRayTracer.max_step");
156  fIntegrationTolerance = options.GetValue<float>("QwRayTracer.tolerance");
157 
158  fMomentumStep = Qw::MeV * options.GetValue<float>("QwRayTracer.momentum_step");
159  fInitialMomentum = Qw::GeV * options.GetValue<float>("QwRayTracer.initial_momemtum");
160  fStartPosition = Qw::cm * options.GetValue<float>("QwRayTracer.start_position");
161  fEndPosition = Qw::cm * options.GetValue<float>("QwRayTracer.end_position");
162 
163  fOptimizationVariable = options.GetValue<int>("QwRayTracer.optim_variable");
164  fOptimizationResolution = options.GetValue<float>("QwRayTracer.optim_resolution");
165  switch (fOptimizationVariable) {
166  case 0: fOptimizationResolution *= Qw::cm; // position.Perp()
167  case 1: fOptimizationResolution *= Qw::rad; // direction.Theta()
168  default: fOptimizationResolution *= Qw::cm; // position.Perp()
169  }
170 }
171 
172 /**
173  * Bridge the front and back partial tracks using the ray-tracing technique
174  * @param front Front partial track
175  * @param back Back partial track
176  * @return List of reconstructed tracks
177  */
179  const QwPartialTrack* front,
180  const QwPartialTrack* back)
181 {
182  // No track found yet
183  QwTrack* track = 0;
184 
185  // Estimate initial momentum from front track
186  //Double_t momentum = EstimateInitialMomentum(front->GetMomentumDirection());
187 
188  // Start iteration from a smaller momentum than initial guess,
189  // to avoid the gap in the momentum spectrum
190  // if(momentum > 0.50 * Qw::GeV)
191  // momentum = momentum - 0.30 * Qw::GeV;
192  // else
193  // momentum = 0.20 * Qw::GeV;
194  //
195  Double_t momentum = fInitialMomentum;
196 
197  // Front track position and direction
198  TVector3 start_position = front->GetPosition(fStartPosition);
199  TVector3 start_direction = front->GetMomentumDirection();
200 
201  // Back track position and direction
202  TVector3 end_position = back->GetPosition(fEndPosition);
203  TVector3 end_direction = back->GetMomentumDirection();
204 
205  // Position and direction after swimming from front track position and direction
206  TVector3 position = start_position;
207  TVector3 direction = start_direction;
208  IntegrateRK(position, direction, momentum, end_position.Z(), fIntegrationOrder, fIntegrationStep);
209 
210  // Difference to optimize on
211  double difference = GetOptimizationVariable(position,direction) - GetOptimizationVariable(end_position,end_direction);
212 
213  // Count the number of iterations in the Newton's method and Runge-Kutta method
214  int iterations_newton = 0;
215  int iterations_rungekutta = 0;
216 
217  // Loop until we get blow the resolution required (or give up)
218  while (fabs(difference) >= fOptimizationResolution
219  && iterations_newton < MAX_ITERATIONS_NEWTON) {
220 
221  // Increment number of iterations
222  iterations_newton++;
223 
224  // Evaluation optimization variable on both side of current momentum
225  Double_t r[2] = {0.0, 0.0};
226 
227  // momentum - dp
228  position = start_position;
229  direction = start_direction;
230  IntegrateRK(position, direction, momentum - fMomentumStep, end_position.Z(), fIntegrationOrder, fIntegrationStep);
231  r[0] = GetOptimizationVariable(position,direction);
232 
233  // momentum + dp
234  position = start_position;
235  direction = start_direction;
236  IntegrateRK(position, direction, momentum + fMomentumStep, end_position.Z(), fIntegrationOrder, fIntegrationStep);
237  r[1] = GetOptimizationVariable(position,direction);
238 
239  // Correction = f(momentum)
240  if (r[0] != r[1]) {
241  momentum = momentum - fMomentumStep * (r[0] + r[1] - 2.0 * GetOptimizationVariable(end_position,end_direction)) / (r[1] - r[0]);
242  }
243 
244  // Update momentum
245  position = start_position;
246  direction = start_direction;
247  iterations_rungekutta = IntegrateRK(position, direction, momentum, end_position.Z(), fIntegrationOrder, fIntegrationStep);
248 
249  // Update the difference
250  difference = GetOptimizationVariable(position,direction) - GetOptimizationVariable(end_position,end_direction);
251  }
252 
253 
254  if (iterations_newton < MAX_ITERATIONS_NEWTON) {
255 
256  QwVerbose << "Converged after " << iterations_newton << " iterations." << QwLog::endl;
257 
258  /* The following restrictions can now be achieved through bridging filters
259 
260  if (fMomentum < 0.980 * Qw::GeV || fMomentum > 1.165 * Qw::GeV) {
261  QwMessage << "Out of momentum range: determined momentum by shooting: "
262  << fMomentum / Qw::GeV << " GeV" << std::endl;
263  return -1;
264  }
265 
266  if (fabs(fPositionPhiOff) > 10*Qw::deg) {
267  QwMessage << "Out of position Phi-matching range: dPhi by shooting: "
268  << fPositionPhiOff / Qw::deg << " deg" << std::endl;
269  return -1;
270  }
271 
272  if (fabs(fDirectionPhiOff) > 10*Qw::deg) {
273  QwMessage << "Out of direction phi-matching range: dphi by shooting: "
274  << fDirectionPhiOff / Qw::deg << " deg" << std::endl;
275  return -1;
276  }
277 
278  */
279 
280  // Create a new track
281  track = new QwTrack(front,back);
282 
283  // Reconstructed momentum
284  track->fMomentum = momentum;
285  track->fIterationsNewton = iterations_newton;
286  track->fIterationsRungeKutta = iterations_rungekutta;
287 
288  // Runge-Kutta 4th order
289  position = start_position;
290  direction = start_direction;
291  track->fIterationsRK4 = IntegrateRK(position, direction, momentum, end_position.Z(), 4, fIntegrationStep);
292  track->fEndPositionActualRK4 = position;
293  track->fEndDirectionActualRK4 = direction;
294 
295  // Runge-Kutta-Fehlberg 4th-5th order
296  position = start_position;
297  direction = start_direction;
298  track->fIterationsRKF45 = IntegrateRK(position, direction, momentum, end_position.Z(), 5, fIntegrationStep);
299  track->fEndPositionActualRKF45 = position;
300  track->fEndDirectionActualRKF45 = direction;
301 
302  // Let front partial track determine the package and octant
303  track->SetPackage(front->GetPackage());
304  track->SetOctant(front->GetOctant());
305 
306  // Chi2 is sum of front and back partial tracks
307  track->fChi = front->fChi + back->fChi;
308 
309  // Position differences at matching plane
310  TVector3 position_diff = position - end_position;
311  track->fPositionDiff = position_diff;
312  track->fPositionXoff = position_diff.X();
313  track->fPositionYoff = position_diff.Y();
314  track->fPositionRoff = position.Perp() - end_position.Perp();
315  track->fPositionPhioff = position.Phi() - end_position.Phi();
316  track->fPositionThetaoff = position.Theta() - end_position.Theta();
317 
318  // Direction differences at matching plane
319  TVector3 direction_diff = direction - end_direction;
320  track->fDirectionDiff = direction_diff;
321  track->fDirectionXoff = direction_diff.X();
322  track->fDirectionYoff = direction_diff.Y();
323  track->fDirectionZoff = direction_diff.Z();
324  track->fDirectionPhioff = direction.Phi() - end_direction.Phi();
325  track->fDirectionThetaoff = direction.Theta() - end_direction.Theta();
326 
327  track->fStartPosition = start_position;
328  track->fStartDirection = start_direction;
329  track->fEndPositionGoal = end_position;
330  track->fEndDirectionGoal = end_direction;
331  track->fEndPositionActual = position;
332  track->fEndDirectionActual = direction;
333 
334  // Magnetic field integrals
336 
337  } else {
338  QwMessage << "Couldn't converge after " << iterations_newton << " iterations." << QwLog::endl;
339  }
340 
341  return track;
342 }
343 
344 
345 int QwRayTracer::IntegrateRK(TVector3& r, TVector3& v, const double p, const double z, const int order, const double h)
346 {
347  // Tolerance per step
348  const double tolerance = fIntegrationTolerance;
349 
350  if (order == 2) {
351  // Butcher tableau RK2
352  // Ref: https://en.wikipedia.org/wiki/Runge-Kutta_methods
353  const int s = 2;
354  const int q = 1;
355  const double alpha = 0.5; // 0.5, 1.0, 1.5
356  // Define A
357  TMatrixD A(s,s); A.Zero();
358  A[1][0] = alpha;
359  // Define b
360  TMatrixD b(q,s); b.Zero();
361  b[0][0] = 1.0 - 1.0 / (2.0 * alpha);
362  b[0][1] = 1.0 / (2.0 * alpha);
363 
364  return IntegrateRK(A, b, r, v, p, z, h, tolerance);
365  }
366 
367  if (order == 4) {
368  // Butcher tableau RK4
369  // Ref: https://en.wikipedia.org/wiki/Runge-Kutta_methods
370  const int s = 4;
371  const int q = 1;
372  // Define A
373  TMatrixD A(s,s); A.Zero();
374  A[1][0] = A[2][1] = 1.0 / 2.0;
375  A[3][2] = 1.0;
376  // Define b
377  TMatrixD b(q,s); b.Zero();
378  b[0][0] = b[0][3] = 1.0 / 6.0;
379  b[0][1] = b[0][2] = 1.0 / 3.0;
380 
381  return IntegrateRK(A, b, r, v, p, z, h, tolerance);
382  }
383 
384  if (order == 5) {
385  // Butcher tableau RKF4(5)
386  // Ref: https://en.wikipedia.org/wiki/Runge-Kutta-Fehlberg_method
387  const int s = 6;
388  const int q = 2;
389  // Define A
390  TMatrixD A(s,s); A.Zero();
391  A[1][0] = 1.0 / 4.0;
392  A[2][0] = 3.0 / 32.0; A[2][1] = 9.0 / 32.0;
393  A[3][0] = 1932.0 / 2197.0; A[3][1] = -7200.0 / 2197.0; A[3][2] = 7296.0 / 2197.0;
394  A[4][0] = 439.0 / 216.0; A[4][1] = -8.0; A[4][2] = 3680.0 / 513.0; A[4][3] = -845.0 / 4104.0;
395  A[5][0] = -8.0 / 27.0; A[5][1] = 2.0; A[5][2] = -3544.0 / 2565.0; A[5][3] = 1859.0 / 4104.0; A[5][4] = -11.0 / 40.0;
396  // Define b
397  TMatrixD b(q,s); b.Zero();
398  b[0][0] = 16.0 / 135.0;
399  b[0][2] = 6656.0 / 12825.0;
400  b[0][3] = 28561.0 / 56430.0;
401  b[0][4] = -9.0 / 50.0;
402  b[0][5] = 2.0 / 55.0;
403  b[1][0] = 25.0 / 216.0;
404  b[1][2] = 1408.0 / 2565.0;
405  b[1][3] = 2197.0 / 4104.0;
406  b[1][4] = -1.0 / 5.0;
407 
408  return IntegrateRK(A, b, r, v, p, z, h, tolerance);
409  }
410 
411  if (order == 6) {
412  // From J.C. Butcher Numerical Methods for Ordinary Differential Equations, 2nd edition, paragraph 335.
413  const int s = 7;
414  const int q = 2;
415  // Define A
416  TMatrixD A(s,s); A.Zero();
417  A[1][0] = 1.0 / 6.0;
418  A[2][0] = 4.0 / 75.0; A[2][1] = 16.0 / 75.0;
419  A[3][0] = 5.0 / 6.0; A[3][1] = -8.0 / 3.0; A[3][2] = 5.0 / 2.0;
420  A[4][0] = -8.0 / 5.0; A[4][1] = 144.0 / 25.0; A[4][2] = -4.0; A[4][3] = 16.0 / 25.0;
421  A[5][0] = 361.0 / 320.0; A[5][1] = -18.0 / 5.0; A[5][2] = 407.0 / 128.0; A[5][3] = -11.0 / 80.0; A[5][4] = 55.0 / 128.0;
422  A[6][0] = -11.0 / 640.0; A[6][1] = 0.0; A[6][2] = 11.0 / 256.0; A[6][3] = -11.0 / 160.0; A[6][4] = 11.0 / 256.0; A[6][5] = 0.0;
423  A[7][0] = 93.0 / 640.0; A[7][1] = -18.0 / 5.0; A[7][2] = 803.0 / 256.0; A[7][3] = -11.0 / 160.0; A[7][4] = 99.0 / 256.0; A[7][5] = 0.0; A[7][6] = 1.0;
424  // Define b
425  TMatrixD b(q,s); b.Zero();
426  b[0][0] = 31.0 / 384.0;
427  b[0][2] = 1125.0 / 2816.0;
428  b[0][3] = 9.0 / 32.0;
429  b[0][4] = 125.0 / 768.0;
430  b[0][5] = 5.0 / 66.0;
431  b[1][0] = 7.0 / 1408.0;
432  b[1][2] = 1125.0 / 2816.0;
433  b[1][3] = 9.0 / 32.0;
434  b[1][4] = 125.0 / 768.0;
435  b[1][6] = 5.0 / 66.0;
436  b[1][7] = 5.0 / 66.0;
437  }
438 
439  if (order == 11) {
440  // From J.C. Butcher Numerical Methods for Ordinary Differential Equations, 2nd edition, paragraph 335.
441  const int s = 12;
442  const int q = 2;
443  // Define A
444  TMatrixD A(s,s); A.Zero();
445  A[1][0] = 2.0 / 27.0;
446  A[2][0] = 1.0 / 36.0; A[2][1] = 1.0 / 12.0;
447  A[3][0] = 1.0 / 24.0; A[3][1] = 0.0; A[3][2] = 1.0 / 8.0;
448  A[4][0] = 5.0 / 12.0; A[4][1] = 0.0; A[4][2] = -25.0 / 16.0; A[4][3] = 25.0 / 16.0;
449  A[5][0] = 1.0 / 20.0; A[5][1] = 0.0; A[5][2] = 0.0; A[5][3] = 1.0 / 4.0; A[5][4] = 1.0 / 5.0;
450  A[6][0] = -25.0 / 108.0; A[6][1] = 0.0; A[6][2] = 0.0; A[6][3] = 125.0 / 108.0; A[6][4] = -65.0 / 27.0; A[6][5] = 125.0 / 54.0;
451  A[7][0] = 31.0 / 300.0; A[7][1] = 0.0; A[7][2] = 0.0; A[7][3] = 0.0; A[7][4] = 61.0 / 225.0; A[7][5] = -2.0 / 9.0; A[7][6] = 13.0 / 900.0;
452  A[8][0] = 2.0; A[8][1] = 0.0; A[8][2] = 0.0; A[8][3] = -53.0 / 6.0; A[8][4] = 704.0 / 45.0; A[8][5] = -107.0 / 9.0; A[8][6] = 67.0 / 90.0; A[8][7] = 3.0;
453  A[9][0] = -91.0 / 108.0; A[9][1] = 0.0; A[9][2] = 0.0; A[9][3] = 23.0 / 108.0; A[9][4] = -976.0 / 135.0; A[9][5] = 311.0 / 54.0; A[9][6] = -19.0 / 60.0; A[9][7] = 17.0 / 6.0; A[9][9] = -1.0 / 12.0;
454  A[10][0] = 2383.0 / 4100.0; A[10][1] = 0.0; A[10][2] = 0.0; A[10][3] = -341.0 / 164.0; A[10][4] = 4496.0 / 1025.0; A[10][5] = -301.0 / 82.0; A[10][6] = 2133.0 / 4100.0; A[10][7] = 45.0 / 82.0; A[10][8] = 45.0 / 164.0; A[10][9] = 18.0 / 41.0;
455  A[11][0] = 3.0 / 205.0; A[11][1] = 0.0; A[11][2] = 0.0; A[11][3] = 0.0; A[11][4] = 0.0; A[11][5] = -6.0 / 41.0; A[11][6] = -3.0 / 205.0; A[11][7] = -3.0 / 41.0; A[11][8] = 3.0 / 41.0; A[11][9] = 6.0 / 41.0; A[11][10] = 0.0;
456  A[12][0] = -1777.0 / 4100.0; A[12][1] = 0.0; A[12][2] = 0.0; A[12][3] = -341.0 / 164.0; A[12][4] = 4496.0 / 1025.0; A[12][5] = -289.0 / 82.0; A[12][6] = 2193.0 / 4100.0; A[12][7] = 51.0 / 82.0; A[12][8] = 33.0 / 164.0; A[12][9] = 12.0 / 41.0; A[12][10] = 0.0; A[12][11] = 1.0;
457  // Define b
458  TMatrixD b(q,s); b.Zero();
459  b[0][0] = 41.0 / 840.0;
460  b[0][5] = 34.0 / 105.0;
461  b[0][6] = 9.0 / 35.0;
462  b[0][7] = 9.0 / 35.0;
463  b[0][8] = 9.0 / 280.0;
464  b[0][9] = 9.0 / 280.0;
465  b[0][10] = 41.0 / 840.0;
466  b[1][5] = 34.0 / 105.0;
467  b[1][6] = 9.0 / 35.0;
468  b[1][7] = 9.0 / 35.0;
469  b[1][8] = 9.0 / 280.0;
470  b[1][9] = 9.0 / 280.0;
471  b[1][11] = 41.0 / 840.0;
472  b[1][12] = 41.0 / 840.0;
473  }
474 
475  // Return zero iterations if no matching Runge-Kutta algorithm
476  return 0;
477 }
478 
479 /**
480  * Integrate using the Runge-Kutta algorithm
481  *
482  * RK integration for trajectory and field integral.
483  * beta = qc/E = -0.2998 / E[GeV] [coul.(m/s)/j]
484  * = -0.2998 / E[MeV] [coul.(mm/s)/j]
485  *
486  * The coupled differential equations are :
487  * dx/ds = vx
488  * dy/ds = vy
489  * dz/ds = vz
490  * dvx/ds = beta * (vy*bz - vz*by)
491  * dvy/ds = beta * (vz*bx - vx*bz)
492  * dvz/ds = beta * (vx*by - vy*bx)
493  * where ds is the displacement along the trajectory (= h, the integration step)
494  *
495  * If the endpoint is at upstream and startpoint is at downstream,
496  * the electron will swim backward
497  *
498  * Ref: https://en.wikipedia.org/wiki/Runge-Kutta_methods#Explicit_Runge.E2.80.93Kutta_methods
499  *
500  * @param A Runge-Kutta matrix
501  * @param b Weight vector (first row is lowest order)
502  * @param r Initial position (reference to final position)
503  * @param v Initial momentum direction (reference to final direction)
504  * @param p Initial momentum magnitude
505  * @param z Final position
506  * @param step Step size
507  * @param epsilon Allowed truncation error per step
508  * @return Number of iterations
509  */
511  const TMatrixD& A,
512  const TMatrixD& b,
513  TVector3& r,
514  TVector3& v,
515  const double p,
516  const double z,
517  const double step,
518  const double tolerance)
519 {
520  // Order
521  const int s = A.GetNrows();
522 
523  // Adaptive step if q > 1
524  const int q = b.GetNrows();
525  const double h_min = fIntegrationMinimumStep;
526  const double h_max = fIntegrationMaximumStep;
527  double h = step;
528 
529  // Determine c
530  TVectorD c(s);
531  for (int i = 0; i < s; i++)
532  for (int j = 0; j < s; j++)
533  c[i] += A[i][j];
534 
535  // Beta factor
536  const double beta = - Qw::c * Qw::e / p;
537 
538  // Initial conditions
539  TVector3 r_new[2], r_old[2];
540  TVector3 v_new[2], v_old[2];
541  r_old[0] = r_old[1] = r;
542  v_old[0] = v_old[1] = v;
543 
544  // Loop
545  int iterations = 0;
546  bool last_iteration = false;
547  while (! last_iteration && iterations < MAX_ITERATIONS_RUNGEKUTTA) {
548  iterations++;
549 
550  // Last step to end up at z
551  if (fabs(r_old[0].Z() - z) < h) {
552  TVector3 r_diff = (r_old[0].Z() - z) / v_old[0].Z() * v_old[0];
553  h = r_diff.Mag();
554  last_iteration = true;
555  }
556 
557  // Determine k
558  TVector3 k_r[s];
559  TVector3 k_v[s];
560  TVector3 point, B;
561  for (int i = 0; i < s; i++) {
562  r_new[0] = r_old[0];
563  v_new[0] = v_old[0];
564  for (int j = 0; j < i; j++) {
565  r_new[0] += A[i][j] * k_r[j];
566  v_new[0] += A[i][j] * k_v[j];
567  }
568  fBfield->GetCartesianFieldValue(r_new[0], B);
569 
570  k_r[i] = h * v_new[0];
571  k_v[i] = beta * k_r[i].Cross(B);
572  }
573 
574  // New values
575  for (int p = 0; p < q; p++) {
576  r_new[p] = r_old[p];
577  v_new[p] = v_old[p];
578  for (int i = 0; i < s; i++) {
579  r_new[p] += b[p][i] * k_r[i];
580  v_new[p] += b[p][i] * k_v[i];
581  }
582 
583  }
584 
585  // Adaptive step
586  // Ref: http://mathfaculty.fullerton.edu/mathews//n2003/rungekuttafehlberg/RungeKuttaFehlbergProof.pdf
587  // Ref: http://pauli.uni-muenster.de/tp/fileadmin/lehre/NumMethoden/SoSe10/Skript/RKM.pdf
588  if (q == 2) {
589  TVector3 r_diff = r_new[0] - r_new[1];
590  h *= pow(tolerance * h / (2 * r_diff.Mag()), 0.25);
591  if (h < h_min) h = h_min;
592  if (h > h_max) h = h_max;
593  }
594 
595  // Take lowest order, that's the one for which the error is minimized
596  r_old[0] = r_old[1] = r_new[0];
597  v_old[0] = v_old[1] = v_new[0];
598 
599  } // end of loop
600 
601  // Return arguments
602  r = r_new[0];
603  v = v_new[0];
604 
605  if (iterations == MAX_ITERATIONS_RUNGEKUTTA) return -1;
606  else return iterations;
607 }
double fDirectionYoff
Difference in Y momentum at matching plane.
Definition: QwTrack.h:115
bool LoadMagneticFieldMap(QwOptions &options)
Load the magnetic field based on config file options.
Definition: QwRayTracer.cc:77
#define QwMessage
Predefined log drain for regular messages.
Definition: QwLog.h:50
double fChi
Combined chi, i.e. the sum of the chi for front and back partial track.
Definition: QwTrack.h:99
static QwMagneticField * fBfield
Magnetic field (static)
Definition: QwRayTracer.h:96
static void DefineOptions(QwOptions &options)
Define command line and config file options.
Definition: QwRayTracer.cc:93
int fIterationsRungeKutta
Number of iterations in Runge-Kutta method.
Definition: QwTrack.h:103
Magnetic field map object.
double fDirectionThetaoff
Difference in momentum polar angle at matching plane.
Definition: QwTrack.h:118
Definition of the ray-tracing bridging method for R2/R3 partial tracks.
double fOptimizationResolution
Definition: QwRayTracer.h:122
Double_t fBdly
y component of the field integral
Definition: QwRayTracer.h:137
double fPositionPhioff
Difference in azimuthal angle phi at matching plane.
Definition: QwTrack.h:111
An options class.
Definition: QwOptions.h:133
int fIterationsRK4
Number of iterations using Runge-Kutta 4th order.
Definition: QwTrack.h:132
int fIterationsNewton
Number of iterations in Newton&#39;s method.
Definition: QwTrack.h:102
double fStartPosition
Starting position for magnetic field swimming.
Definition: QwRayTracer.h:131
double fIntegrationStep
Runge-Kutta fixed step size for order 4 or less.
Definition: QwRayTracer.h:101
int fOptimizationVariable
Newton&#39;s method optimization variable.
Definition: QwRayTracer.h:108
TVector3 fStartPosition
Position and direction before and after swimming.
Definition: QwTrack.h:123
int GetOctant() const
Get the octant number.
TVector3 fEndPositionActualRK4
Actual position of track at back plane using Runge-Kutta 4th order.
Definition: QwTrack.h:133
#define QwVerbose
Predefined log drain for verbose messages.
Definition: QwLog.h:55
TVector3 fDirectionDiff
Difference in momentum at matching plane.
Definition: QwTrack.h:113
Double_t fChi
combined chi square
#define MAX_ITERATIONS_NEWTON
Definition: QwRayTracer.cc:35
static const double e
Definition: QwUnits.h:91
void SetPackage(EQwDetectorPackage package)
Set the package.
const TVector3 GetPosition(const double z) const
Return the vertex at position z.
Double_t fBdl
scalar field integrals
Definition: QwRayTracer.h:135
double fDirectionPhioff
Difference in momentum azimuthal angle at matching plane.
Definition: QwTrack.h:117
Definition of the track class.
static const double rad
Definition: QwUnits.h:105
double fPositionRoff
Difference in radial position at matching plane.
Definition: QwTrack.h:110
po::options_description_easy_init AddOptions(const std::string &blockname="Specialized options")
Add an option to a named block or create new block.
Definition: QwOptions.h:164
void SetMagneticFieldIntegral(double bdl, double bdlx, double bdly, double bdlz)
Set magnetic field integral.
Definition: QwTrack.h:76
TVector3 fEndDirectionActual
Actual direction of track at back plane.
Definition: QwTrack.h:130
TVector3 fStartDirection
Start direction of front track.
Definition: QwTrack.h:124
T GetValue(const std::string &key)
Get a templated value.
Definition: QwOptions.h:240
void GetCartesianFieldValue(const double point_xyz[3], double field_xyz[3]) const
Get the cartesian components of the field value.
A logfile class, based on an identical class in the Hermes analyzer.
const TVector3 GetMomentumDirection() const
Return the direction.
QwRayTracer(QwOptions &options)
Default constructor.
Definition: QwRayTracer.cc:48
double fIntegrationMaximumStep
Maximum step size.
Definition: QwRayTracer.h:104
Interface to the various bridging methods.
TVector3 fEndPositionActual
Actual position of track at back plane.
Definition: QwTrack.h:129
Contains the complete track as a concatenation of partial tracks.
Definition: QwTrack.h:30
void ProcessOptions(QwOptions &options)
Process command line and config file options.
Definition: QwRayTracer.cc:150
double fDirectionXoff
Difference in X momentum at matching plane.
Definition: QwTrack.h:114
double fInitialMomentum
Newton&#39;s method initial momentum.
Definition: QwRayTracer.h:128
void SetOctant(int octant)
Set the octant number.
#define MAX_ITERATIONS_RUNGEKUTTA
Definition: QwRayTracer.cc:37
double fDirectionZoff
Difference in Z momentum at matching plane.
Definition: QwTrack.h:116
TVector3 fEndPositionActualRKF45
Actual position of track at back plane using Runge-Kutta-Fehlberg.
Definition: QwTrack.h:137
const QwTrack * Bridge(const QwPartialTrack *front, const QwPartialTrack *back)
Bridge from the front to back partial track.
Definition: QwRayTracer.cc:178
TVector3 fPositionDiff
Matching of front and back track position and direction at matching plane.
Definition: QwTrack.h:107
Double_t fBdlx
x component of the field integral
Definition: QwRayTracer.h:136
TVector3 fEndDirectionGoal
Goal direction of back track.
Definition: QwTrack.h:127
static const double GeV
Definition: QwUnits.h:95
int fIterationsRKF45
Number of iterations using Runge-Kutta-Fehlberg.
Definition: QwTrack.h:136
static std::ostream & endl(std::ostream &)
End of the line.
Definition: QwLog.cc:299
TVector3 fEndPositionGoal
Goal position of back track.
Definition: QwTrack.h:126
double fPositionXoff
Difference in X position at matching plane.
Definition: QwTrack.h:108
int fIntegrationOrder
Runge-Kutta method order.
Definition: QwRayTracer.h:99
double fEndPosition
Ending position for magnetic field swimming.
Definition: QwRayTracer.h:133
TVector3 fEndDirectionActualRK4
Actual direction of track at back plane using Runge-Kutta 4th order.
Definition: QwTrack.h:134
double fPositionYoff
Difference in Y position at matching plane.
Definition: QwTrack.h:109
double fIntegrationMinimumStep
Runge-Kutta minimum and maximum step size for adaptive step.
Definition: QwRayTracer.h:103
static const double MeV
Definition: QwUnits.h:94
TVector3 fEndDirectionActualRKF45
Actual direction of track at back plane using Runge-Kutta-Fehlberg.
Definition: QwTrack.h:138
double fPositionThetaoff
Difference in polar angle theta at matching plane.
Definition: QwTrack.h:112
double GetOptimizationVariable(const TVector3 &position, const TVector3 &direction) const
Optimization variable from position and direction.
Definition: QwRayTracer.h:110
double fIntegrationTolerance
Allowable truncation error in adaptive step.
Definition: QwRayTracer.h:105
double fMomentum
Spectrometer momentum.
Definition: QwTrack.h:100
bool TestFieldMap()
Test the field map.
double fMomentumStep
Newton&#39;s method step size in momentum.
Definition: QwRayTracer.h:125
Contains the straight part of a track in one region only.
int IntegrateRK(const TMatrixD &A, const TMatrixD &b, TVector3 &r, TVector3 &v, const double p, const double z, const double h, const double epsilon)
Runge-Kutta numerical integration by Butcher tableau.
Definition: QwRayTracer.cc:510
Double_t fBdlz
z component of the field integral
Definition: QwRayTracer.h:138
static const double c
Physical constants.
Definition: QwUnits.h:118
EQwDetectorPackage GetPackage() const
Get the package.
static const double cm
Length units: base unit is mm.
Definition: QwUnits.h:61
virtual ~QwRayTracer()
Destructor.
Definition: QwRayTracer.cc:66